Microstimulation in LGN Produces Focal Visual Percepts: Proof of Concept for a Visual Prosthesis

John S. Pezaris
R. Clay Reid

Department of Neurobiology
Harvard Medical School
Background: Visual Prostheses

- Blindness due to Diseases of the Eye
 - glaucoma
 - macular degeneration
 - retinitis pigmentosa

- Electrical Stimulation
 - sensory neurons failed
 - silicon sensor
 - microstimulation

- Current Approaches
 - retinal stimulation
 - cortical stimulation
Background

- Novel Approach: LGN
Hypothesis

- Electrical Response Similar to Optical Response
 - place electrode in LGN
 - measure receptive field (RF)
 - stimulate same physical location
 - generate focal percept at RF?
Methods: General

- 1 M. Mulatta (Rhesus macaque), 2 hemispheres
- head fixed, scleral coil to measure eye position
- tetrodes: 10 & 13 μm, ML-insulated tungsten, 0.2–0.6 MΩ
- daily electrode insertion
- mapping paradigm to measure RF
 - standard white-noise reverse-correlation techniques
- saccade paradigm to measure response to stimulation
 - charge-balanced stimulation between 2 of 4 tetrode wires
 - 25-200 ms pulse train, 1 ms sinusoid pulses, 100–200 Hz
Methods: Mapping Paradigm

- **EYE POS**
- **FIX POINT**
- **PRE-STIMULUS**
- **MAP**
- **POST-STIMULUS**

Fixation points are marked with circles, and stimulus images are shown sequentially.
Methods: Saccade Paradigm

- **Fixation (0–1000 ms)**: Eye position (EYE POS) fixation point (FIX POINT)
- **Pre-stimulus (300 ms)**: Optical target
- **Optical Target**: Various dots and shapes are shown
- **Saccade (< 300 ms)**: Electrical target
- **Electrical**: Two blue dots with a yellow ignition
- **Blank (50–200 ms)**: Single blue dot
Results: Optical, Electrical, and Blank Targets

- Optical (80%): $n = 76$
- Electrical (10%): $n = 8$
- Blank (10%): $n = 9$
RF Maps and Electrical Target Saccades

RF Map

Electrical Saccades

RF/Saccade Overlay

$EYE\ POS\ X\ (deg)$

$EYE\ POS\ Y\ (deg)$

$n = 9$
RF Maps with Electrical Target Saccades
Optical, Electrical Saccade Latencies

![Graph showing optical versus electrical saccade latencies](image)
Main Sequences

![Graph showing relationship between saccade size and peak speed. The graph includes data points for optical, electrical (L), and electrical (R) measurements.](image-url)
Comparative Accuracy

ERROR DISTANCE

ENDPOINT SCATTER

DEGREES

DEGREES
Dual Electrodes: Two Discriminable Targets

040721 TETRODE 1

040721 TETRODE 2
Probably not Directly Evoking Saccades
Conclusions

- LGN electrical stimulation can produce focal percepts
 immediate effectiveness in saccade task
 electrical saccades are comparable to optical saccades
 saccade endpoints tightly clustered
 10 degree (likely better) discrimination
 double-saccade hints at perceptual rather than motor effect

- 2 now, 10 soon, ... form vision?
 currently running 2-electrode experiments
 plan for 10 electrodes soon
 eventually, enough for form vision?
ACKNOWLEDGEMENTS

• Equipment
 Stylianos Pezaris

• Experiment
 Carrie McAdams
 Richard Born
 Sasha Vagodny

• Support
 NIH
 The Kirsch Foundation
 The Dana/Mahoney Foundation